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Abstract 
Due to the increasing reliance of our society on the 
timely and reliable transfer of large quantities of 
information (such as voice, data, and video) across high 
speed communication networks, it is becoming 
important for a network to offer survivability, or at least 
graceful degradation, in the event of network failure. In 
this paper we aim to offer a solution in the selection of 
the K-best disjoint paths through a network by using 
graph theoretic techniques. The basic approach is to 
map an arbitrary network graph into a trellis graph 
which allows the application of computationally 
efSicient methods to find disjoint paths. Use of the 
knowledge of the K-best disjoint paths for improving the 
survivability of ATM networks at the virtual path and 
virtual circuit level is discussed. 

Keywords: Network management, Network survivability 
techniques, Graph theory, Trellis graph. 

1. Introduction 

Due to the increasing reliance of society on the 
timely and reliable transfer of large quantities of 
information (such as voice, data, and video) across high 
speed communication networks, it is becoming 
important for networks to provide adequate service in 
the event of a failure. A network failure, such as the 
loss of a link or a node, can occur due to a variety of 
reasons causing service disruptions ranging in length 
from seconds to weeks. Typical events that cause 
failures are accidental cable cuts, hardware 
malfunctions, software errors, natural disasters (e.g.. 

fire), and human error (e.g., incorrect maintenance). 
Since many of the causes of failures are beyond the 
control of the network providers, there has been 
increasing interest in the design of survivable networks. 
Survivability can be defined as network design and 
management procedures to minimize the impact of 
failures on the network. Survivability techniques can be 
classified into three categories: 1) prevention, 2) 
network design, and 3) traffic management and 
restoration. Prevention techniques focus primarily on 
improving component and system reliability. Some 
examples are the use of fault-tolerant hardware 
architectures in switch design, provision for backup 
power supplies, predeployment stress testing of 
software, use of frequency hopped spread spectrum 
techniques to prevent jamming in military radio 
networks and so on. Network design techniques try to 
mitigate the effects of system level failures such as link 
or node failures by placing sufficient diversity and 
capacity in the network topology. For example, the use 
of multi-homing nodes so that a single link failure 
cannot isolate a network node or an access network. 
Traffic management and restoration procedures seek to 
direct the network load such that a failure has minimum 
impact when it occurs and that connections affected by 
a failure are reconnected around the failure. 

Survivability goals may be accomplished by 
designing network infrastructures that are robust to 
malfunctions of nodes and links, and implementing 
network control systems that are inherently fault- 
tolerant and self-healing. In recent years there has been 
significant work on survivability for circuit switched 
voice networks and the underlying physical 
transmission network. 
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In this paper we aim to use graph theory to select 
the K-best disjoint paths (or unmerged paths) between 
any Origin-Destination (OD) pair. The selection of the 
K-best disjoint paths can take into account many 
factors, such as selection of the shortest paths (hence 
minimizing delay), minimization of the bandwidth 
allocation (given the bandwidth demanded by 
customers), and maximization of network throughput. 
“Best” paths are those paths which are as diverse as 
possible (i.e. if the network topology allows there are K 
disjoint paths), and therefore will maximize our chances 
of survivability, or ensure at least a graceful 
degradation, (i.e. display fault tolerance) in the event of 
a network fault. 

Here we concentrate on the selection of the K-best 
paths which can be used for load balancing or rerouting, 
using the shortest path as the minimization criterion. 
We provide an algorithm that transforms a given 
network into a trellis graph, and consequently, we use 
the algorithm of [6] for finding the K-best paths through 
the trellis. This algorithm is based on a transformation 
of the K-best path trellis problem into an equivalent 
Minimum Cost Network Flow (MCNF) problem. 

The majority of published work concentrates on the 
k-shortest link disjoint path problem, e.g. [l,  2, 3, 41, 
rather than the K-best paths. A number of these 
algorithms are based on the iteration of Dijkstra’s 
shortest path algorithm to find restoration paths for the 
failed links via surviving spare links on other spans of 
the network (referred to as the k-successively shortest 
link disjoint path algorithm in [3]). Note that once a 
restoration path is found, the spare links which make it 
up are removed from the network description and the 
algorithm is run again until it fails to find any 
additional paths. Examples include: [3] which addresses 
span restoration rather than path restoration; and [2] 
and [4] which are based on matrix and recursive matrix 
calculations respectively to improve computational 
complexity. Note that these methods are not strictly 
optimal in terms of finding the maximal number of 
paths in all possible networks, and may underestimate 
the number of paths whenever the k-successively 
shortest link disjoint path algorithm selects a path 
which blocks other potential paths (well illustrated in 
[3] using the generalised “trap” topology), or even 
worse they may overestimate the number of link disjoint 
paths (e.g. [2]). On the other hand, [5, 6, 71 concentrate 
on finding only a pair of disjoint paths between a given 
pair of nodes, by optimizing the physical length of 
paths: [5] finds the shortest pair of node-disjoint paths 
but cannot be applied at the span (physical) level (e.g. 
physical links sharing a common conduit); [6] finds a 
pair of disjoint paths between a given pair of nodes 

taking into consideration ariy span sharing by links, 
however the solution for networks with arbitrary 
connection patterns is not given; and [7] presents a 
heuristic approach (not necessarily optimal) to find in 
polynomial time a pair of paiths which is as diverse as 
possible, taking into account my common spans. 

In this paper, we formulate the network 
survivability problem in terms of a number of 
transformations leading to a trellis graph. A trellis graph 
is a structured graph offering several advantages in 
formulating many problems of diverse fields such as 
radar, sonar, radioasronomy, etc. [X, 9, 10, 111. Using 
the trellis graph we seek to find the K-best disjoint 
paths from an origin node to a destination node. If there 
is a cutpoint (or articulation point), then there are no 
disjoint paths [12]. Therefore we seek the next best 
solution (not necessarily optimal), that is a solution 
which provides K-best path!; which are as diverse as 
possible (i.e. with minimal overlap between the paths in 
terms of nodes and links). To this effect we run a 
similar algorithm, briefly described in section 3. Our 
algorithm offers several advantages, in comparison to 
existing: can find the K-best paths (rather than the K- 
shortest paths, or the pair of shortest paths; computes 
the K-best disjoint paths with respect to link cost 
(instead of just the hop count); if a particular OD pair 
contains m disjoint paths our algorithm can exactly 
compute them (i.e. does not under or over estimate). 

The remainder of the paper is organized as follows. 
Section 2 describes the problem formulation, and 
section 3 constructs the algorithm. In section 4 we.offer 
our conclusions together with some recommendations 
for future work. 

2. Formulation of Survivability Issue 

We introduce some graph theoretic concepts and 
we establish the notation ancl terminology we shall use 
throughout this paper, and a,pply these concepts in the 
network survivability problem (see also [13]). 

2.1. Graph Modelling 

A directed graph G = (V, E) is a structure 
consisting of a finite set of nodes V = {vi, v2, ..., vn} 
and a finite set of links E = ((vi, vj) I 3, v j ~ V  and vi # 
vj}, where each link is an ordlered pair. 

We define a trellis as a directed graph G = (V, E) 
with nodes and directed links that satisfies the following 
conditions: 
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6)  

(ii) 

The node set V is partitioned into L (mutually 

V;I=H, l < i , j S L .  

c(vjl v.1 =f(Q(vi), Wvi. vj)), 

1 J  
disjoint) subsets Vi ,  V2, ..., VL, such that I Vi I = I V v i ~ V , a n  d V(v- ,v . )eE,  L = l , 2  ,..., L. 

Let P = { v 1, v2, ..., vk} be a path in a trellis graph. 
The cost c(P) of a path P through the trellis is defined 

Links connect nodes only of consecutive subsets 
vL and vt+l 9 if "j) E E, then vi and 

The magnitude T we shall call depth of the trellis. 
vj E V,+l, 1 I t  < L. as 

A K-trellis i s  a trellis graph with- two additional 
properties: 
(i) It has two more nodes s E Vo and t E VL+~,  such 

that (s, vi) E E, for every vi E V1 and (vj, t) E E, 
for every vi E VL. 1 S i, j < H. 

(ii) The node vi of the set V, is connected (where 
possible) with K = 2g+l nodes {vi- ..., vi, ..., 
vi+g) of the set V,+l, where 1 I, i 5 E, 1 5 t < L 
and g =  1, 2, ..., (H-1)/2. 
The depth of a K-trellis graph will be equal to L+2. 

In Fig. 1 a K-trellis is presented with L = 4, H = 4 and 
K = 3. Throughout the paper, we shall refer to a K- 
trellis graph with K = H as trellis graph. 

S 
I 

Fig. 1. A K-trellis graph with L = 5, H = 4 and K = 
3. 

A walk in a trellis is an alternating sequence of 
nodes and links, i.e., P = [VI, (vl,v2), v2  ..., (vk-l,vk), 
vk]. The length L(P) of a walk is the number of links in 
it. A path is a walk in which all nodes are distinct. For 
simplicity, we shall denote the path P by P = {vi, v2, 
..., Vk} and we shall refer to v1 and Vk asfirst and lust 
nodes of P, respectively (i.e. the origin and destination 
nodes). 

2.2. Link and Path Cost 

In addition to the above defined link weights and 
metrics, in each link (vi, vj) E E of a trellis graph, vi E 
V, and vj E V,+l, we associate a third number, which 
we call link cost and denote by cxvi, vj) or cki, j) or 
c(i, j), 1 I, t 5 L and 1 5 i, j I H. The cost of each link is 
given as a function of the node and link metrics, 
denoted Q and D respectively, i.e., 

where c(v., v.) is the cost of link (i, j) E E. The 
shortest path from the node vi to node v. is a path P = 
{vi, vi+l, ..., vj} with minimum cost. 

1 J  
J 

Fig. 2. Illustration of three mutually disjoint paths 
on a K-trellis with L = 5, H = 4 and K = 4. 

Let G = (V, E) be a trellis graph with L H nodes, 
i.e., I V I = LH. Two paths Pi = (s, ul, u2, ..., uL, t} and 
P. = {s, U ' 1, U ' 2, ..., U ' L, t} are said to be mutually 
exclusive or unmerged if ut # U ' c for all L = 1, 2, ..., L; 
otherwise, they are said to be merged. Hereafter, we 
shall refer to unmerged paths as disjoint paths (see Fig. 
2). 

J 

2.3. Finding the K-best Paths 

With the above notation, the problem of finding 
the K best paths in a trellis graph is stated as follows: 

Problem: Find K paths P,, P2, ..., P, through the 
trellis G = (V, E) which minimize the total cost 

K 
J=C c ( P i )  

i = l  

subject to the constraints that the paths P,,.P,, ..., 
PK are mutually disjoint. Figure 2 illustrates this issue. 

Constanon in [14] showed that the problem of 
finding the K-best paths through a trellis graph can be 
defined as a Minimum Cost Network Flow (MCNF) 
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problem. He also showed that the worst-case 
computation time for this problem is bounded by n3 
lugn, where n is the number of nodes in the trellis. His 
O(n3 logn) time algorithms are much faster than those 
proposed in [15]. Note that the computational 
complexity of our algorithm is currently under 
investigation, and will be reported elsewhere. 

It is important to note that, for K 2 2 the best set of 
K paths is not found in general by finding the best path, 
then the next best path that is completely disjoint with 
the best path, etc (as in the k-succesively shortest link 
disjoint paths [3]). The reason for this is that these paths 
are not independent of one another because of the 
requirement that the paths be completely disjoint so that 
it might be better to use one or more of the branches 
that are part of the best single path for other paths [ 151. 

3. Problem Transformation 
We have formulated the path selection and 

rerouting problem in addressing network survivability 
as a graph theoretic, K-best path, problem with an 
efficient minimum cost network flow solution. 

For any given network topology, our objective is to 
transform it to a trellis graph. Toward this end, we first 
define a node partition of an undirected graph according 
to distance between its nodes. 

Given a graph G = (V, E) and a node v E V, we 
define a partition d(G. v) of the node set V (we shall 
frequently use the term partitiun of the graph G). with 
respect to the node v as follows: 

where AL(v, I), 0 5 K Lv, are the adjacency-level 
sets, or simply the adjacency-levels, and I..,, is the 
length of the partition 4(G,  v). The adjacency-level sets 
of the partition d(G,  v), are defined as follows: 

AL(v, 9 = ( U  I d(v, U) = t, 0 2 t < Lv) 

where d(v, U) denotes the distance between nodes 
v and w in G. We point out that d(v, U) 2 0, and d(v, U) 
= 0 when v = U, for every v, U E V. Thus. the 
adjacency-level sets of the graph of fig.3.a. with respect 
to node s are shown in fig.3.b, i.e., AL(s. 0) = Is), 
AL(s, 1) = {A, B, C), AL(s, 2) = (D, E, F}, AL(s, 3) = 
(J, K) and AL(s, 4) = (t). Some properties of these sets 
appear in [ 161. 

(b) 
Fig. 3. (a) A weighted undirected graph G = (V, E) 

or a network (all weights are positive integer 
numbers); (b) Partition of the graph G, with respect 

to verlices s. 

Having defined the partition of a graph, or 
network, into adjacency-level sets, let us now describe 
the algorithm which tranisforms a given network 
topology to a trellis graph. For ease of exposition, we 
will use a particular example network (see fig. 3.a) to 
illustrate the transformation process and then generalize 
our approach. 

Consider the network topology G = (V, E, c) given 
in fig. 3.a, where c is the costfunction from the link set 
E to real numbers. 

Step 1 

step 2 

The first step in the transformation process 
toward the trellis graph is to partition, with 
respect to a particullar node, the node set of the 
network into adjacency-levels (see fig.3.b). By 
definition, this partiition places the nodes of the 
network at "vertical" levels according to their 
distances. (Starting at the origin node of a 
given OD pair, we label the starting node as s, 
and the last as t.) 

In step 2, we discalnnect the network into two 
(sub)networks G and G .  Network G contains 
all the nodes and llinks except the destination 
node t and the linlks incident to it (in graph- 
theoretic terms, it is the graph induced by the 
node set V-(t)). Network G '  contains the 
nodes in set {t}ulV(t) and all the links with 
end-nodes t and x. where x E NO). (We 
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step 3 

step 4 

step 5 

illustrate the details of this step through an 
example shown in the appendix.) 

If now after step 1 and 2, we have any 
"vertical" links in G ,  i.e., two nodes connected 
by a link belonging to the same level (which 
our trellis model does not support), we apply 
two specific operations which eliminate 
"vertical" links. These operations are based on 
the addition of dummy nodes (indicated by 
empty circles; see fig. 4.a) and 0-cost links, in 
such a way that the path cost is preserved. The 
details of these operations are defined later. 

In this step, we merge the resulting graph G 
from step 3 with the graph G' by adding (if 
necessary) dummy nodes and 0-cost links. The 
resultant graph for this example is shown in 
fig. 4.a. 

Now, if necessary, to complete the trellis 
graph, we introduce more dummy nodes, but 
with infinite link cost (shown as dotted lines; 
see fig. 4.b). 

The resultant graph, which results in the complete 
trellis graph is shown in fig. 4.b. This algorithm (step 1 
to 5 )  can be repeated for all OD pairs. 

(b) 
Fig. 4. Illustration of transformation of the network 

of fig. 3.b into a trellis graph. 

Obviously, the crucial step of the transformation 
algorithm is step 3 where two specific operations are 
applied in the network. We next give the definition for 
the shortest path from node s to a node y, through a 
specific link, which is necessary for the definition of 
these operations. 

Definition: Let x, y be two nodes of consecutive 
levels which are connected by a link. The s-cost of link 
(x, y) is defined to be the minimum cost of the path 
from s to y through node x, i.e., the cost of the path P = 
{s, ..., x, y), and is denoted by Nx, y). 

Operation P1: Let G(V, E, c) be a network 
partitioned into adjacency-levels and let (x, y) E E be a 
link, where nodes x, y are on the same level I ,  i.e., x, y 
E AL(s, I). Let x be the node satisfying the following 
properties: 

min{+(x, v) I v E A L ( ~ ,  1 - 1 ) )  
>min{Ky,u) I U E  AL(s,t-l)} 

or 
min[Hx, v) I v E A L ( ~ ,  1 - 1 ) )  

=min(My, U) 1 u E AL(~ ,  1 - 1 ) )  

Then, replace node x with a dummy node XI, move 
node x into level I +1 and update the following 
parameters: 

w(x, x') = 0 
~ x ,  XI) = min{Kx', v) I v E AL(~,  1 - 1 ) )  
~ x ,  y) = min{Nx', v) I v E A L ( ~ ,  1 - 1 ) )  + c(x, y) 

Fig. 5 shows consecutive adjacency-levels of a 
partitioned network before and after the application of 
the Operation P1. Integer numbers indicate link cost, 
while integers in parenthesis indicate link s-cost. It is 
pointed out that before the application of the Operation 
P1 the link "vertical" (x, y) has only link cost, while 
after the operation it gains link s-cost. 

Fig. 5. Illustration of the application of the 
Operation P1. 

Operation P2: Let G(V, E, c) be a network and let 
x be a node at level I which, after operation P1, remains 
without neighborhoods in level I - 1 ,  i.e., 

N(x) n AL(s,  4 - 1 )  = 0. 
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Then, move node x into level I +1 and update the 
following parameter: 

MX, y) = min{Hy, v) I v E AL(S, 1-01 + c(x, y) 

Fig. 6 shows the resulting network topology when 
Operation P2 is applied to node x. Both links (2. x) and 
(y, x) have now link s-cost. 

Fig 6. Illustration of the application of the 
Operation P2. 

Next we give a more formal listing of the 
previously described algorithm which transfers a given 
network topology to a trellis graph. 

Algorithm Net-to-Trellis 
begin 
1. Partition the node set of the network G(V, E, 

c) into adjacent-level sets, with respect to origin node 
s E V. That is, the nodes of the network are placed at 
Ievels according to their distances from s; the origin 
node s is placed at level 0; 

2. Disconnect the network into two 
(sub)networks G and G', where G' contains all the 
nodes and links except the destination node t and the 
links incident to it, while G' contains the nodes in set 
{t}uN(t) and all the links of the form (x, t). where x E 
W. 

3. Apply the operations P1 and P2 in the 
network G in order to eliminate all the "vertical" links 
of the network G ;  

4. Merge the resulting network from step 3 with 
the network G' by adding (if necessary) dummy nodes 
and 0-cost links; 

5. Complete the trellis structure by adding m- 

cost links; 
end. 

It is worth noting that as our main objective is to 
enhance network survivability, we seek K routes 
which are as diverse as possible. This can be achieved 
by selecting the K-best (disjoint) paths through the 
network. The term "K-best-paths" in our approach 

does not necessarily implly the "K-shortest-paths" . 
This is natural, since we seek the K-best disjoint 
paths. Our example network (see fig. 3) illustrates this 
point. If we consider the shortest path, then there is no 
other disjoint path from s io t. Therefore, in order to 
find 2 disjoint paths it is obvious that the shortest path 
cannot be one of the 2 disjoint paths. This is easily 
illustrated in fig. 3 where the shortest path from s to t 
has cost 6, while the costs alf the 2-best (disjoint) paths 
are 9 and 10 (contrast with the k-successively shortest 
link disjoint paths methald [3], which selects the 
shortest path first-thus after removing from the 
network description the links selected in the shortest 
path, no links connecting to t remain, therefore the 
algorithm terminates with only one path found). 

Remark after step 1, we can easily check whether 
any disjoint paths for an OD pair exist. The process is 
fairly straight forward; it merely checks whether there 
is a cutpoint [ll, 121. If theae are no disjoint paths, then 
we must find the K-best paths which are as diverse as 
the network topology allows (i.e., minimize any sharing 
of resources between the paths). Toward this end our 
initial thoughts follow: Break up the trellis graph at the 
cutpoint to form two trellis subgraphs. One from s till 
the cutpoint, and another one from the cutpoint till t. 
Find the K-best paths for eitch trellis subgraph, and then 
concatenate to obtain the ELbest paths for the complete 
graph. The K-best paths now are not disjoint (since they 
share the node at the cutpoint), but at least from the 
path leading to the cutpoint, and from the cutpoint 
leading to the destination node, the K-best paths are 
disjoint (of course assuming that there are no further 
cutpoints). 

4. Conclusions 
In this paper, we use graph theoretic techniques to 

address network survivability issues by finding the K- 
best (disjoint) paths through a trellis graph (as compared 
with the majority of the literature which addresses the 
K-successively shortest link disjoint paths). Given any 
network topology we develop an algorithm which 
transforms the network into a trellis graph. Using the 
trellis graph we can find the K-best (node disjoint) 
paths for any Origin-Destination pair in a given network 
topology. Our algorithm offers many advantages 
(discussed in the introduction) in comparison to existing 
ones. 

Knowledge of the K-best paths can be used in the 
design of survivable networks. Several questions 
regarding this work still exist. For example, how to best 
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use the knowledge of the K-best paths in a real network, 
where dynamic (re)routing, taking into account user 
(such as quality of service) and network (such as 
maximization of the throughput) requirements can offer 
substantial benefits. 

APPENDIX 

In order to illustrate the workings of algorithm 
Net-to-Trellis, we present with a help of an example the 
processes of transforming a network G(V, E, c) into a 
trellis graph. The integer numbers indicate link cost, 
while integers in parenthesis indicate link s-cost. Here, 
vertices are named with capital letters. 

s t 

C '  F '  K 

Figure Al: A network G(V, E, c) used to illustrate 
the Graph-to-Trellis transformation (it is partitioned 
into adjacency-level sets; see section 3); Step 1 of the 

algorithm. 

c '  F '  K 

Figure A2: The network G(V, E, e) is split into two 
(sub)networks G' and 6"; Step 2 of the algorithm. 

J 

K 

Figure A 3  The network after application of the 
Operation P1 on link (B, C); Step 3 of the algorithm. 

Figure A4: The network after application of the 
Operation P2 on node E; Step 3 of the algorithm. 

A 
5(8) ? 3(11) O(11) - >. 

K 

Figure A5: The network after application of the 
Operation P1 on link (E, J); Step 3 of the algorithm. 

1 

E 
S 

1 

E 
S 

K 

Figure A6: The network after application of the 
Operation PI on link (E, K); Step 3 of the algorithm. 

A 
5(8) 0 3(11) O(11) O(l0 ' - .. " >. K 

Figure A7: The network after application of the 
Operation P1 on link (E, J); Step 3 of the algorithm. 

Figure AS: The two networks G' and G" are 
connected into one; Step 4 of the algorithm. 
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Figure A9: The transformed network; Step 5 of the 
algorithm. 
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